
4
Parameter Estimation

The estimation of the parameter vector θ is carried out by maximizing the
quasi-likelihood of the density function in (3-1). In a more general framework
we cannot suppose that our probability model is correctly specified, so we use
the Quasi-Maximum Likelihood Estimator (QMLE), which is the same as the
Maximum Likelihood Estimator under the correct specification. Thus, we can write
the conditional quasi-likelihood based on a sample {yt}T

t=1 as

LT (θ) =
T∑

t=1

log

[∑

i∈T
Bi(xt; θi)π(yt|xt; ψi)

]
. (4-1)

Numerical optimization is carried out using the EM algorithm of (19), as
shown in appendix A. The idea behind the EM algorithm is to maximize a sequence
of simple functions which leads to the same solution as maximizing a complex
function. This technique were also used by (36), (38), Wong and Li (1999,2000),
(31) and (9), among others.

4.1
Asymptotic Theory

In this section we present a set of asymptotic results with respect to the esti-
mator. First, we present a set of assumptions about the (unknown) true probability
model.

Assumption 1 The observed data are a realization of a stochastic process

{(yt,xt)}T
t=1, where the unknown true probability model Gt ≡ G[(yt,xt); ·] is a

continuous density on R, and the true likelihood function is identifiable and has a

unique maximum at θ0.

We define θ∗ as the parameter vector that minimize the Kullback-Leibler
divergence criterion between the true probability model, Gt, and the estimated
probability model, f(·; θ). Hence, the QMLE θ̂T of θ∗, is defined as:

θ̂T = argmax
θ∈Θ

LT (θ), (4-2)

where LT (θ) is established in (4-1). Let # be the cardinality operator.
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Assumption 2 The parameter vector θ∗ is interior to a compact parameter space

Θ ∈ Rr1 × Rr2
+ , where r1 = 2(#J) + (p + 1)(#T) and r2 = #T .

The identifiability of mixture of experts models was shown in (35) for the
case where the gating functions are multinomial logits. Since our gating function is
different, the conditions presented there are not adequate. We show in Appendix
B that under mild conditions, the model is identifiable such that the following
assumption holds.

Assumption 3 The tree mixture-of-expert structure, as presented in (3-1), is iden-

tifiable, in the sense that, for a sample {yt;xt}T
t=1, and for θ1, θ2 ∈ Θ,

T∏
t=1

f(yt|xt; θ1) =
T∏

t=1

f(yt|xt; θ2) , a.s.

is equivalent to θ1 = θ2.

The following theorem establishes the existence of the QMLE.

Teorema 4.1 (Existence) Under Assumptions 1 – 3, the QMLE exists and

E[LT (θ)] has a unique maximum at θ∗.

To ensure the consistency of the QMLE, we state additional conditions.

Assumption 4 The process {(yt,xt)}T
t=1 is strictly stationary and strong mixing.

Assumption 5 Let Yt = (yt, x′t)
′, then E [YtY

′
t] < ∞.

Teorema 4.2 Under Assumptions 1–6, θ̂T
a.s.→ θ∗.

For asymptotic normality we need the following additional assumption:

Assumption 6 E [Yt ⊗Yt ⊗Yt ⊗Yt] < ∞

Teorema 4.3 (Asymptotic Normality) Under Assumptions 1–6,

√
T

(
θ̂T − θ∗

)
D→ N

(
0,A(θ∗)−1B(θ∗)A(θ∗)−1

)
,

where

A(θ∗) = E

[
−∂2LT (θ)

∂θ∂θ′

∣∣∣∣∣
θ∗

]
and B(θ∗) = E

[
∂LT (θ)

∂θ

∣∣∣∣∣
θ∗

∂LT (θ)

∂θ′

∣∣∣∣∣
θ∗

]
.

DBD
PUC-Rio - Certificação Digital Nº 0421015/CA


	Modelando Séries Temporais Não-Lineares Através de uma Mistura de Modelos Gaussianos Estruturados em Árvore
	Resumo
	Sumário
	Introduction
	Mixture of Models: A Brief Review of the Literature
	Model Presentation
	Parameter Estimation
	Asymptotic Theory

	Modeling Cycle
	Monte-Carlo Study
	Parameter estimation
	Specification Algorithm.
	Approximation Capabilities

	Examples
	Example 1: Canadian Lynx.
	Example 2: Brazilian Financial Dataset.

	Conclusions
	Referências Bibliográficas
	EM Algorithm
	Identifiability
	Stationarity and Geometric Ergodicity
	Proofs of Theorems
	Proof of Theorem 4.1 
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Lemmas



